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Abstract Trypanosoma cruzi, an intracellular protozoan
etiologic agent of Chagas disease is covered by a dense coat
of mucin-type glycoproteins, which is important to promote
the parasite entry and persistence in the mammalian host
cells. The O-glycosylation of 7. cruzi mucins (Tc-mucins) is
initiated by enzymatic addition of «-O-N-acetylglucos-
amine (GIcNAc) to threonine (Thr) by the UDP-GlcNAc:
polypeptide o-N-acetylglucosaminyltransferase (pp-«-
GIcNACT) in the Golgi. The Tc-mucin is characterized by
the presence of a high structural diversity of O-linked oli-
gosaccharides found among different parasite strains, com-
prising two O-glycan Cores. In the Core 1, from strains
principally associated with the domestic transmission cycle
of Chagas disease, the GIcNAc O-4 is substituted with a (3-
galactopyranose ([3Galp) unit, and in the most complex
oligosaccharides the GIcNAc O-6 is further processed by
the addition of 31 —2-linked Galp residues creating a short
linear Galp-containing chain. In the Core 2 structures,
expressed by strains isolated from 7. cruzi sylvatic hosts,
the GIcNAc O-4 carries a [3-galactofuranose (3Galf) unit
and the GIcNAc O-6 can carry a branched Galpf31—
3[Galpf1—2]Galpp1—6 motif. The O-glycans carrying
nonreducing terminal 3Galp are available for sialylation
by a surface T. cruzi trans-sialidase activity. Based on
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structural results, this review summarizes available data on
the highly conserved process, which adds the GIcNAc unit in
«-linkage to Thr residues the basis of the post-translational
modification system in 7. cruzi mucins. In addition, a mech-
anism unique employed by the parasite to transfer exogenous
sialic acid residues to Tc-mucins is presented.

Keywords Trypanosoma cruzi - Posttranslational
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Introduction

Chagas’ disease, an infection caused by the protozoan Trypa-
nosoma cruzi, remains a major cause of morbidity in Latin
America. Though major advances in preventing the spread of
this disease have been made in recent decades, an estimated 10
million people are infected due to prior exposure to 7. cruzi
[1], and about 30 % of the individuals infected are character-
ized by heart inflammation and dysfunction [2]. T. cruzi
presents genetic diversity, resulting in the prevalence of spe-
cific clinical forms and morbidity of Chagas disease, partially
due to different protein expression levels and genomic insta-
bility [3]. Zingales and co-authors [4] subdivided 7. cruzi
species into six Discrete Typing Units (DTUs) designated 7.
cruzi 1 to T. cruzi V1. Recently, 7. cruzi 1 has been correlated
with cardiomyopathy manifestations [5, 6] increasing the need
for further comparative biological and biochemical studies on
different 7. cruzi strains.

Protein glycosylation is an important post-translational
modification underlying host-parasite interactions, which
may determine the outcome of infection. The surface of T.
cruzi is covered principally by a family of sialylglycoproteins
(T. cruzi mucins) linked to the cell membrane through a

@ Springer



660

Glycoconj J (2013) 30:659-666

glycosylphosphatidylinositol (GPI) anchor [7]. The protein
domain is rich in threonine residues [8, 9] which can be
modified with multiple O-linked glycan chains [10]. These
O-glycans are acceptors of sialic acid derived from exogenous
sialylglycoconjugates, through a reaction catalysed by a
trypanosomal-specific trans-sialidase [11, 12]. The post-
translational modifications of 7. cruzi mucins (Tc-mucin) give
rise to O-linked glycans attached to the peptide by «-GIcNAc-
O-Thr linkages [13], through the activity of a unique UDP-
GlcNAc:polypeptide «-N-acetylglucosaminyltransferase
(pp-x-GIcNAcT) [13]. In contrast, in the mammalian
mucins O-glycosylation, N-acetylgalactosamine (GalNAc)
units are attached through «-glycosidic linkage to the Ser
and Thr residues [14-16].

The core &-GIcNAc-O-Thr of Te-mucins is further pro-
cessed by (-galactopyranose (3Galp) (Core 1) and f3-
galactofuranose (3Galf) (Core 2) units in a 7. cruzi strain-
specific pattern of linkages and substitutions [10, 17]. Here
we highlight the 7. cruzi UDP-GIcNAc:polypeptide o-N-
acetylglucosaminyltransferase (pp-x-GIcNAcT) and trans-sia-
lidase activities, and unique O-glycan assemblies in Tc-mucins.
Proven functions for the glycan domains of Te-mucins on the
pathogenesis of Chagas disease are unknown, although poten-
tial functions are addressed in this review. In fact, different
strains of 7. cruzi form a very heterogeneous group with
specific characteristics such as histotropism, antigenicity, in-
fectivity and pathogenicity [18], suggesting that the interaction
of the parasite and human host cells would determine the
severity of Chagas’ disease. However, so far, the direct corre-
lation of the structure of Te-mucins O-glycans and the immu-
nopathology of the disease has not been characterized.

T. cruzi UDP-GlcNAc:polypeptide
o-N-acetylglucosaminyltransferase (pp-x-GlcNAcT)

The post-translational modification of Tc-mucin with O-linked
2-N-acetamido-2-deoxy-D-glucopyranose (O-GlcNAc) is con-
served in all 7. cruzi strains studied to date (Fig. 1). Direct
compositional analyses of Tc-mucin core proteins show that
Thr are much more frequent than Ser residues [8, 9]. The same
fact occurs in 7. cruzi MUC gene-derived protein sequences
[9] (Table 1). The x-anomeric configuration of the protein-O-
linked GlcNAc was determined by 2D-Nuclear Magnetic Res-
onance Spectroscopy (NMR) analysis of Smith-degraded sia-
lylglycoproteins [13]. The key data were the 3JH1,H2 coupling
constant, which is small, and IJHL(;l, determined in an HSQC
spectrum without '*C decoupling. Both these techniques, com-
bined with the chemical shift data and the resistance of the
product of in vitro enzymatic GlcNAc addition to a synthetic
peptide substrate (KP,TgKP,) to digestion with jack bean (3-N-
acetylglucosaminidase, indicate that the GIcNAc residue has
the «-anomeric configuration, thus distinguishing this system
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from the single (3-linked GIcNAc residue observed as dynamic
glycosylation on a number of nuclear and cytosolic proteins,
and which is believed to serve a regulatory purpose [19, 20].
The kinetic properties of the 7. cruzi pp-a-GIcNAcT were
investigated using microsomal fractions prepared from
insect-dwelling (epimastigotes) and cell-derived trypomasti-
gote forms of 7. cruzi II (DTU) [4] Y-strain, [7], the synthetic
peptide acceptor KPPTTTTTTTTKPP, and with UDP-[’H]
GIcNAc as the sugar donor [13, 21]. The enzyme has an
optimal pH of 7.5 to 8.5 and requires the presence of Mn>".
It is strongly inhibited by UDP but unaffected by the presence
of tunicamycin or amphomycin, indicating that activated doli-
chol donor intermediates are not involved [13]. The microsome
system from 7. cruzi is unable to add ["H]GIcNAc to the
synthetic nonapeptide YSDSPSTST [22], the substrate for O-
linked (3-N-acetylglucosamine transferase (OGT) an enzyme
which catalyses a common post-translational modification of
nuclear and cytoplasmic proteins [19, 20].

In 7. cruzi a gene which encodes pp-x-GIcNACT activity
was identified, designed TcOGNT-2 [23], and the predicted
sequence is 61-81 % similar to the 250-amino-acid catalytic
domain of DAGnt2, a Dictyostelium discoideum membrane-
bound Golgi pp-xGIcNAcT [24, 25]. Recently, it was demon-
strated that TCOGNT-2 shows different levels of expression
during the life cycle of 7. cruzi. When trypomastigotes pene-
trate Vero cells and differentiate into amastigotes, TcOGnT-2
expression declines, and low levels of TCOGNT-2 mRNA and
protein were detected. Later, when intracellular amastigotes
differentiate in trypomastigotes the TCOGNT-2 increases ex-
pression again [26]. Interestingly, overexpressing of TCOGNT-
2 enhances 7. cruzi infectivity [26].

The assembly of Thr-linked O-glycans of Tc-mucins

The assembly of Thr-linked O-glycans of Tc-mucins is
initiated in the Golgi [13, 21] by the pp-a-GlcNACT. The
O-x-GlcNAc residues are further processed to form the
backbone structure for biologically important epitopes.
The addition of galactopyranose and galactofuranose mono-
sacharides is catalyzed by (31,6; 31,4; $1,3; f1,2-Galp
transferases and (31,4; 31,2-Galf transferases, and the at-
tachment of sialic acid at some terminal 3Galp residues is
catalyzed by a trans-sialidase activity [7].

The simplest glycosylation pattern found in Tc-mucin
consists of a single unsubstituted O-linked GIcNAc residue.
In the 7. cruzi Tulahuen strain [27], high performance liquid
chromatography (HPLC) analyses suggest that single
GlcNAc residues are present at about 20 % of the glycosyl-
ation sites, and similarly high amounts are present in the O-
glycan mixture from other strains [7, 8, 17, 28, 29] (Fig. 1).
O-glycans were isolated as alditols from purified Tc-mucins
by alkaline reductive cleavage and fractionated by gel
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Fig. 1 The structures of the derived glycan of -O-Thr Tc-mucins from different 7. cruzi strains. Representative glycan structure is indicative with
colored geometric symbols, conform to those recommended by Consortium for Functional Glycomics

filtration chromatography [8]. The purification is difficult
due to high levels of glycosylation with eventual sialylation,
thus when it is required further purification by HPLC on
pyrolysed graphitic carbon (PGC) was performed [27-29].
O-glycan chemical structures from Tc-mucins were de-
termined, usually, by one- and two-dimensional (2D)
homo- and hetero-nuclear NMR spectroscopy combined
with methylation analysis, mild acid hydrolysis and
mass spectrometry.

Two options for the addition of the first Gal residue have
been identified. The Core 1, in the Y [7] and CL-Brener [29]
strains, a PGalp residue is transferred to the GlcNAc O-4
(Fig. 1). The core 2, in the G [8], Colombiana [17], and
Dm28c [28] strains, a 3Galf residue is attached at GlcNAc
0-4 to give structures shown in Fig. 1. The O-glycans from 7.
cruzi Tulahuen strain mucins show high structure diversity

[27]. The Cores 1 and 2 are synthesized by Tulahuen strain,
the Galp 3 —4GlcNAc (Core 1) and Galfp3 —4GlcNAc (Core
2). Surprisingly, sialylation is the only observed elaboration of
the Galp—4GIcNAc [27] (Fig. 1). In the Tulahuen strain
[27] besides both Galpf3 —4GlcNAco— Thr and Galf 3 —
4GIlcNAco— Thr there is also evidence for O-glycan with a
-glucose residue on GIcNAc O-4. This appears to be a
“dead-end” species, as no higher oligosaccharides with this
glucosylation pattern have been observed.

Extension of the GlcNAcx1-/Thr
In the CL and Y T cruzi strains, more complex glycan struc-

tures arise from the attachment of a 3-Galp residue at GIcNAc
0-6, leading to a disubstituted oligosaccharide (Fig. 1). Further
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Table 1 Amino acid composition of Tc-mucins purified from different
T. cruzi strains

Amino acid T, cruzi strain

G Y CL-Brener Tulahuen °MUCI-Y [9]
Thr 503 459 53.8 50.5 54.5
Asp/Asn 12.8 11.2 10.0 12.9 4.5
Ala 10.3  10.1 8.7 10.6 5.7
Pro 93 84 7.8 6.3 11.4
Ser 09 1.1 0.9 0.9 4.6
Glu/GIn 52 69 5.4 5.7 5.7
Lys 0.6 44 0.6 2.1 34
Gly 7.1 85 6.8 7.8 0.0
Arg 00 04 0.3 0.0 4.6
Val 23 1.6 32 2.3 1.1
Met 0.0 0.0 0.0 0.0 0.0
Ile 04 0.7 0.8 0.3 3.4
Tyr 00 0.0 0.0 0.0 0.0
Leu 05 05 0.5 0.5 0.0
His 04 03 0.5 0.0 0.0
Phe 00 0.0 0.0 0.0 0.0

# Amino acid content is indicated in number of residues per 100
residues

® Composition deduced from the gene sequence

elaborations occur by addition of one or two (3-Galp(1—2)
residues to the Galp present on the GlcNAc O-6, thus a short
linear galactan chain is created on the 6-arm [27, 29]. Signif-
icant in the Core 1 structure is the presence of O-glycans
terminated by Galpxl—3. In Te-mucins isolated from cell-
derived trypomastigotes the O-glycans contain the trisaccha-
ride Galpaxl—3Galpp3 —-4GlcNAcx—[30]. The «-
galactosylated glycans are highly immunogenic to humans
and represent the major epitope for trypanolytic anti-aGal
antibodies found in the serum of acute and chronic chagasic
patients [30, 31].

Three biosynthetic pathways by which Core 2 Galfp —
4GIcNAco—are elaborated and have been characterized
[27]. The first is similar to that seen in the Core 1, with
addition of a BGalp residue to the GIcNAc O-6, to give rise
to disubstituted structure (Fig. 1). This has been observed
for the G-, Colombiana-, Tulahuen- and Dm28c- strains [8,
17,27, 28]. Second, in the Tulahuen strain, glycans resulting
from the addition of either 3-Galpl —2 or 3-Galfp1—2 to
the Galfp —>4GIlcNAcx—are observed, leading to approx-
imately equal amounts [27]. Third, the expression of
Galf31—2Gal/3 —-4GIlcNAcx— motif appears to be
unique in Tc-mucins. Mammalian cells do not produce
glycoproteins or glycolipids containing Galf, and this
epitope elicits a strong immune response in 7. cruzi
infected mice [32].
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The O-glycans containing both 3-Galf'and 3-Galp linked
to—4GlcNAcx—and — 6GlcNAcx—, respectively, have
terminal (3-Galp residues available for sialylation. Along
this line, the Tc-mucins from Dm28c¢ [28] and Tulahuen
[27] strains express O-glycan containing as nonreducing
end, both sialic acid and Galf residues (Fig. 1). Using
synthetic Galf and Galp-contaning oligosaccharides, with a
recombinant preparation of 7. cruzi trans-sialidase, and
sialyllactose as sialic donor, Agusti and co-authors [33]
verified that the presence of Galf in the O-glycans from
Tc-mucins does not impair their acceptor properties. Fur-
thermore, this third biosynthetic pathway forms a trigalac-
tosylated (Fig. 1, G-, Colombiana, Dm28c, Tulahuen
strains) glycan, which differs from glycan in Family 1 in
that the additional Galp residue is linked (31— 3 rather than
31—2; also, two tetragalactosylated members, which the
most common arises by addition of a Galp31 —2 to the 3-
substituted Galp residue attached to the GlcNAc O-6. The
presence of a branched tri-galactose structure on the 6-arm
appears to be restricted to Core 2. A minor tetragalactosy-
lated glycan (Fig. 1, Tulahuen strain) arises by addition of a
[3-Galf unit to the Galf O-2. Two pentagalactosylated struc-
tures have been also observed, arising by addition of either a
3-Galp or a (3-Galf residue to O-2 of the Galf on the
GIcNAc 0-4, resulting in structures described in Fig. 1
(Tulahuen strains). These data imply the presence of differ-
ent [3-galactopyranosyl transferases expressed in a strain-
dependent manner, emphasizing that the Tc-mucin O-glycan
structures are strain-dependent.

Sialylation of the 7. cruzi O-linked glycans occurs
through the action of a parasite-specific frans-sialidase
[11], which transfers sialic acid from NeuSAcx2—
3Galp3-containing exogenous donor molecules to terminal
[ Galp-containing acceptors, attaching it in an x2-3 linkage
configuration. A mixture of anionic oligosaccharides was
isolated from the Tc-mucins of CL-Brener strain [29], which
were characterized as 3'-sialyl lactosaminitol, NeuSAcx2 —
3Galp1-4GlcNAcxl1- and two 3'-monosialylated variants,
Galpp1—4[Galpp1—6]GIcNAc, in approximately, equal
amounts, suggesting 7. cruzi trans-sialidase has no specific-
ity for the 4- or 6- arm. Although all terminal 3Galp resi-
dues are potential acceptors for sialic acid, no sialylated
forms of the more complex Core 2 glycans have been
observed, and so any selectivity in the sialylation of the
various nonreducing end (-Galp residues remains unde-
fined. Also, no evidence was found for disialylated O-gly-
cans. Consistent with data from in vitro sialylation of O-
linked glycans purified from Tc-mucins of epimastigotes [7]
and metacyclic trypomastigotes [34]. The incorporation of
one molecule of sialic acid hinders entry of a second mol-
ecule when two potential acceptor sites are present. The T.
cruzi trans-sialidase substrate donor specificity has been the
subject of research for many groups [35, 36], likewise there
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are different patented processes related to the enzymatic
synthesis of sialyla2 — 3 3galactosides, using this enzyme.

T. cruzi trans-sialidase (Tc-TS) activity and Tc-mucins

Four points related with the pathogenesis of Chagas disease
are importants: (i) Tc-mucins are the main acceptors of sialic
acid in trans-sialidase mediated reaction [7, 8, 37]; (ii)
sialylation of Tc-mucin O-glycans is crucial for the viability
and persistence of 7. cruzi in mammalian hosts [38—40]; (iii)
the initial incorporation of GlcNAc through pp-a-GleNAcT
is a limiting step for the addition of sialic acid by 7. cruzi
trans-sialidase (Tc-TS); and (iv) no similar mammalian
enzymes were described.

Hundreds of genes encoding Tc-TS enzymes and Tc-
mucin glycoproteins are present in the 7. cruzi genome,
and, interestingly, Tc-mucins glycoproteins genes are close-
ly linked to members of the frans-sialidase super-family at
multiple sites in the 7. cruzi genome [41]. The co-expression
of TcTS and pp-a-GlcNAcT has been also observed [26].
Furthermore, there are evidences that the increase or de-
crease of Tc-TS and pp-x-GlcNAcT expressions are depen-
dent upon the different forms of the parasite, during the
infectious process [26].

The T. cruzi TS is an enzyme located on the external
surface of the parasite, and a modified sialidase that, instead
of releasing sialic acid, can transfer the host-derived sialic
acid to terminal 3Galp in the Tc-mucin O-glycans. This
enzymatic reaction is different from the known sialyltrans-
ferases present in the Golgi that exclusively use CMP-sialic
acid as the donor substrate.

The first evidence on a novel pathway for the incorpora-
tion of sialic acid into 7. cruzi glycoproteins, through an
unusual transglycosylase activity, was done by Previato and
co-authors [11]. The authors have observed that 7. cruzi
cells grown in the presence of fetal calf serum (sialic acid
donor) were agglutinated by wheat germ agglutinin (WGA),
a lectin that also recognizes terminal sialic acid units. None-
theless, in the absence of fetal calf serum in the medium
culture, or if the parasites were treated with Clostridium
perfringes neuraminidase, the WGA binding was abolished
and instead the 7. cruzi cells agglutinated by peanut agglu-
tinin (PNA), a lectin that recognizes terminal residues of
B Galp. Further, these later cells regained their WGA agglu-
tinability when incubated with fetuin or sialyllactose, but
not with free sialic acid. These same results were obtained
with energy-rich and energy-depleted 7. cruzi cells [11].
Later, the presence of frans-sialidase activity was prov-
en, and established that the expression of TcTS and the
acquisition of sialic acid by T. cruzi are relevant events
in the interaction and invasion of the parasite to the
host [38, 42].

Developmental life cycle of 7. cruzi and Tc mucin
functions

T. cruzi presents a complex life cycle involving the hematoph-
agous triatomine insect and mammalian host species, with
different developmental stages. Within the insect, 7. cruzi dif-
ferentiates in two diverse forms: replicative epimastigote and
non-replicative metacyclic trypomastigote forms. Metacyclic
trypomastigotes are mostly transmitted during a blood meal of
the insect, which are able to invade a wide variety of mamma-
lian nucleated cells. In mammalian hosts, 7. cruzi behaves as an
obligate intracellular pathogen. Inside the cell, the infective
trypomastigotes are temporarily contained in the parasitopho-
rous vacuole subsequently the parasites escape to the cytosol,
and differentiate into the replicative amastigotes, which after
several divisions, transform into cell-derived trypomastigotes,
which are released into the bloodstream. The 7. cruzi life cycle
closes when a triatomine vector feeds on a 7. cruzi-infected
mammal [43]. Several mechanisms of infection have been
proposed for the extremely complex 7. cruzi-host cell interac-
tion process, which involves many putative 7. cruzi
ligands and a growing list of host cell targets [44, 45].

Here, we summarize the main aspects of 7. cruzi-host cells
interactions, involving Tc-mucins. Te-mucins from epimasti-
gotes and metacyclic trypomastigotes differ from those of cell
culture trypomastigotes in their apparent molecular masses.
The Tc-mucins isolated from 7. cruzi insect forms migrate on
SDS-PAGE as a broad band in 35-50 kDa range [8, 11], while
Tc-mucins from cell-derived trypomastigotes present a wide
range from 60 to 200 kDa molecular masses [30, 42], these are
equivalent to the highly glycosylated protein sharing sialic
acid-containing epitopes crucial for mammalian cell attach-
ment and invasion [42]. Despite the relevance of cell-derived
trypomastigotes, little is known about the chemical structure of
O-glycans of Tc-mucins from these forms, however a key
difference from the insect-stage mucins, is the presence of
terminal o-galactopyranosyl residues, which are targets of lytic
antibodies isolated from patients with chronic Chagas disease,
in cell-derived trypomastigote mucins [30, 31]. Tc-mucins
from cell-derived trypomastigotes induce the synthesis of nitric
acid and proinflammatory cytokines IL-12 and TNF-x by
stimulated macrophages [46], effects that may be modulate
the immune response to 7. cruzi during the infection. Many of
the biological properties of Tc-mucins have been related to the
presence of sialic acid-containing x-O-linked glycans [42]. It
has been demonstrated that Tc-mucins are the main acceptors
of sialic acid in frans-sialidase mediated reaction, and that the
sialylation of Te-mucin O-glycans is crucial for the viability
and persistence of these parasites. Nevertheless, Yoshida and
co-author [47] demonstrated that the ability of cell-derived
trypomastigotes, obtained from 7. cruzi G-strain, to invade
HeLa cells is independent of sialic acid, providing evidence
that the rate of invasion of desialylated parasites is significantly

@ Springer



664

Glycoconj J (2013) 30:659-666

higher after treatment of both 7. cruzi and purified Tc-mucin
with neuraminidase. However, this effect seems to be strain-
dependent. The major structural features do not differ between
O-glycans from epimastigote [7] and metacyclic trypomasti-
gote forms [34], however, mucins from metacyclic trypomas-
tigotes, but not from epimastigotes, bind to cultured cell lines
[48]. The involvement of Tc-mucins from metacyclic trypo-
mastigotes, in invasion to mammalian cell lines, was verified
by inhibition of parasite internalization by monoclonal anti-
bodies that recognize Galp or Galf-containing epitopes of O-
glycans [49]. The mechanism of interaction of metacyclic
trypomastigotes-host cells mainly relies on 7. cruzi strains
which express on their surface variant forms of O-gly-
can and exhibit diverse range of capability to invade
host cells in vitro [50, 51].

Conclusion

The surface of 7. cruzi is covered by mucin-like molecules (Tc-
mucins) which are implicated to parasite protection in both
vertebrate and invertebrate hosts, in mechanisms of infectivity
and modulation of the host immune response throughout the 7.
cruzi life cycle. The obvious medical significance of 7. cruzi
and the knowledge of the molecular structure of the Tc-mucin
have led to intensive study of its biosynthesis. The first step of
O-glycosylation of Tc-mucins is a unique biosynthetic path-
way catalyzed by a pp-a-GIcNACT, which transfers «-O-N-
acetylglucosamine (GIcNAc) to threonine (Thr) residues.

The pathways leading to O-glycosylation of 7. cruzi gly-
coproteins show unusual features when compared to that of
mammalian cells. Optimistically, the selective expression of
enzymes, which are not present in the parasite’s hosts, such as
the pp-x-GIcNACT and TcTS, an enzyme with a unique
specificity for the addition of sialic acid on Tc-mucins, might
provide suitable novel targets for the development of less toxic
and more effective treatments against Chagas’ disease.
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